数学思想方法的精炼与应用

篇1:数学思想方法的精炼与应用

数学基础打得好,对将来的升学也有较大帮助。但是数学的学习比较抽象,小学生在学习过程中会碰到一些 “拦路虎”,掌握一些方法,这些就都不怕了。

1、对应思想方法

对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法

假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法

比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法

用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。

5、类比思想方法

类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

6、转化思想方法

转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法

分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。

对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

8、集合思想方法

集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。

9、数形结合思想方法

数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。

10、统计思想方法

小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。

11、极限思想方法

事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。

在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。

12、代换思想方法

它是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?

13、可逆思想方法

它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。

14、化归思维方法

把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。

化归的方向应该是化隐为显、化繁为简、化难为易、化未知为已知。

15、变中抓不变的思想方法

在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?

16、数学模型思想方法

所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。

篇2:数学思想方法的精炼与应用

  数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。

  例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。我们又可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。

篇3:数学思想方法的精炼与应用

  把一个立方体切成27个相等的小立方体,如果在切的过程中不允许调整,很显然,要6刀才能切成,现在的问题是,如果允许在切的过程中调整,即第一刀切完后,如果你愿意的话,切成的两部分可以重叠到一起后再切第二刀,在切第三刀之前,也可以把前两刀切出的部分任意重叠,如此类推.请问,按这样的切法,是否可以用少于6刀切出27个相等的小立方体?

  分析这个问题并不容易,一是三维空间对人的想象力要求比较高,二是各种切法情况比较复杂,难于一一分析.

  我们不妨用类比的方法,先考虑一个二维情况下的类似问题:把一个正方形分成9个大小一样的小正方形,如果的切的时候不能调整,容易知道,要四刀.现在的问题是,如果可以调整,可以将切出的部分重叠后再切,可以少于四刀吗?

  您去试一试就知道,这个问题还是不容易解决!

  一不做,二不休,考虑一维情况下类似的题目:把一条直线平均分成三段,不能调整的话,两刀?如果能调整呢?情况如何?你很快可以发现,还是要两刀!怎么说明这个问题?您很快会找到中间那段,这段有两个端点,每个端点处总是要切一下的!

  返回去想切正方形的事!也看中间那个正方形.它有四条边,不论你怎么切,每一刀总只能切一条边!于是4刀是最少的!

  于看三维的情况:也考虑最中间的正方体.它有六个面,不论你怎么切,每刀最多切出一个面来.那么最少要六刀!

  问题就这样解决了!

篇4:数学思想方法的精炼与应用

  一、集合的思想方法

  把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。集合思想作为一种思想,在小学数学中就有所体现。在小学数学中,集合概念是通过画集合图的办法来渗透的。

  如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。

  二、对应的思想方法

  对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。

  如人教版一年级上册教材中,分别将小兔和砖头、小猪和木头、小白兔和萝卜、苹果和梨一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。

  三、数形结合的思想方法

  数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。

  例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。我们又可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。

  四、函数的思想方法

  恩格斯说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。学生对函数概念的理解有一个过程。在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。

  函数思想在人教版一年级上册教材中就有渗透。如让学生观察《20以内进位加法表》,发现加数的变化引起的和的变化的规律等,都较好的渗透了函数的思想,其目的都在于帮助学生形成初步的函数概念。

  五、极限的思想方法

  极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法的精炼与应用,它是事物转化的重要环节,了解它有重要意义。

  现行小学教材中有许多处注意了极限思想的渗透。在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,1÷3=0.333…是一循环小数,它的小数点后面的数字是写不完的,是无限的;在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。

  六、化归的思想方法

  化归是解决数学问题常用的思想方法。化归,是指将有待解决或未解决的的问题,通过转化过程,归结为一类已经解决或较易解决的问题中去,以求得解决。客观事物是不

  断发展变化的,事物之间的相互联系和转化,是现实世界的普遍规律。数学中充满了矛盾,如已知和未知、复杂和简单、熟悉和陌生、困难和容易等,实现这些矛盾的转化,化未知为已知,化复杂为简单,化陌生为熟悉,化困难为容易,都是化归的思想实质。任何数学问题的解决过程,都是一个未知向已知转化的过程,是一个等价转化的过程。化归是基本而典型的数学思想。我们实施教学时,也是经常用到它,如化生为熟、化难为易、化繁为简、化曲为直等。

  如:小数除法通过“商不变性质”化归为除数是整数的除法;异分母分数加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小等;在教学平面图形求积公式中,就以化归思想、转化思想等为理论武器,实现长方形、正方形、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生的认知结构。

  七、归纳的思想方法

  在研究一般性性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。

  如:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度。这就运用归纳的思想方法。

  八、符号化的思想方法

  数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国著名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材十分注意符号化思想的渗透。

  人教版教材从一年级就开始用“□”或“()”代替变量x,让学生在其中填数。例如:1+2=□,6+()=8,7=□+□+□+□+□+□+□;再如:学校有7个球,又买来4个。现在有多少个?要学生填出□○□=□(个)。

  符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。因此,教师在教学中要注意学生的可接受性。

  九、统计的思想方法

  在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法

  小学数学除渗透运用了上述各数学思想方法的精炼与应用外,还渗透运用了转化的思想方法、假设的思想方法、比较的思想方法、分类的思想方法、类比的思想方法等。从教学效果看,在教学中渗透和运用这些教学思想方法,能增加学习的趣味性,激发学生的学习兴趣和学习的主动性;能启迪思维,发展学生的数学智能;有利于学生形成牢固、完善的认识结构。总之,在教学中,教师要既重视数学知识、技能的教学,又注重数学思想、方法的渗透和运用,这样无疑有助于学生数学素养的全面提升,无疑有助于学生的终身学习和发展。

 

篇5:数学思想方法的精炼与应用

  导语:反证法(又称归谬法、背理法)是一种论证方式,他首先假设某命题不成立(即在原命题的条件下,结论不成立),然后推理出明显矛盾的结果,从而下结论说原假设不成立,原命题得证。

  三个古希腊哲学家,由于争论和天气炎热感到疲倦了,于是在花园里的一棵大树下躺下来休息一会,结果都睡着了。这时一个爱开玩笑的人用炭涂黑了他们的前额。三个人醒来以后,彼此看了看,都笑了起来。但这并没引起他们之中任何一个人的担心,因为每个人都以为是其他两人在互相取笑。这时其中有一个突然不笑了,因为他发觉自己的前额也给涂黑了。那么他是怎样觉察到的呢?你能想出来吗?

  答案:为了方便,用甲、乙、丙分别代表三个科学家,并不妨设甲已发觉自己的脸给涂黑了。那么甲这样想:”我们三个人都可以认为自己的脸没被涂黑,如果我的脸没被涂黑,那么乙能看到(当然对于丙也是一样),乙既然看到了我的脸没给涂黑,同时他又认为他的脸也没给涂黑,那么乙就应该对丙的发笑而感到奇怪。因为在这种情况下(甲、乙的脸都是干净的),丙是没有可笑的理由了。然而现在的事实是乙对丙的发笑并不感到奇怪,可见乙是在认为丙在笑我。由此可知,我的脸也给涂黑了。

  这里应着重指出的是,甲并没有直接看到自己的脸是否给涂黑了,他是根据乙、丙两人的表情进行分析、思考,而说明了自己的脸给涂黑了。简单地说,甲是通过说明脸被涂黑了的反面-没被涂黑是错误的,从而觉察了自己的脸被涂黑了。因此这是一种间接的证明方法。显然这种证明方法也是不可缺少的。

  像这样,为了说明某一个结论是正确的,但不从正面直接说明,而是通过说明它的反面是错误的,从而断定它本身是正确的方法,就叫做”反证法”.

如果您想了解更多的相关知识,您可以在西柚教育搜索咨询相关信息。

THE END
喜欢就支持一下吧
点赞0 分享
评论 抢沙发
头像
欢迎您留下宝贵的见解!
提交
头像

昵称

取消
昵称表情代码图片

    暂无评论内容